

产品确认书

Product Confirmation

CUSTOMER:

Product :

Frequency:

Model:

DATE:

声表面谐振器

R418M

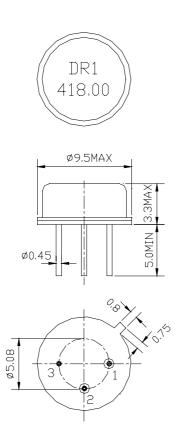
TO-39-DIP

承认后请寄回一份

PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL

承认結果	客戶签名	客戶承认章	日期	备注
CONCLUSION	SIGNATURE	STAMP	DATE	REMARK
合格 ACCEPT				
不合格				
REJECT				

制表: 刘小姐


审核:

(公章)

尊敬的客户:请您抽出一点时间,在7-10个工作日内将承认书回签,若未回签,以视默认.谢谢合作!

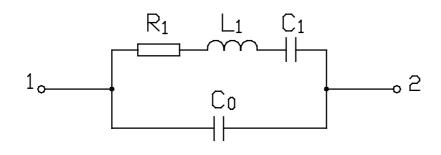
1. Package Dimension

(TO-39/3A)

Unit: mm

Pin No.	Function
FIII INO.	Function

- 1. Input
- 2. Output
- 3. Ground


2. Marking

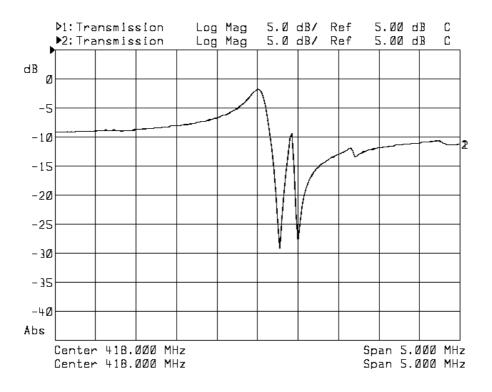
ΤH

418.00

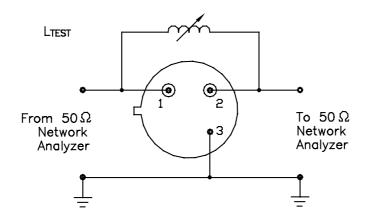
- 1. Color: Black or Blue
- 2. DR: Manufacture's logo
- 3. 1: One-port SAW Resonator
- 4. 418.00: Center Frequency (MHz)

3. Equivalent LC Model

4. Performance


4.1 Maximum Rating

DC Voltage V _{DC}	10V		
AC Voltage V _{PP}	10V (50Hz/60Hz)		
Operation Temperature	-40 to +85		
Storage Temperature	-45 to +85		
RF Power Dissipation	0dBm		


4.2 Electronic Characteristics

Item		Units	Minimum	Typical	Maximum
Center Frequency		MHz	417.925	418.00	418.075
Insertion Loss		dB	_	1.2	2.5
Quality Factor	Unloaded Q		_	12,100	—
	50 Loaded Q	_		2,000	—
Temperature	Turnover Temperature		20	35	50
Stability	Turnover Frequency	KHz		fo	—
	Freq. Temp. Coefficient	ppm/ ²	_	0.032	—
Frequency Aging		ppm/yr		< ± 10	
DC Insulation Resistance		М	1.0		—
	Motional Resistance R ₁			20	26
RF Equivalent	Motional Inductance L ₁	μH		91	—
RLC Model	Motional Capacitance C ₁	fF	—	1.6	—
	Shunt Static Capacitance Co	pF	_	2.0	2.3

4.3 Frequency Characteristics

4.4 Test Circuit

Note: Reference temperature shall be 25 ± 2 . However, the measurement may be carried out at 5 to 35 unless there is a dispute.

5. Reliability

5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s^2 , duration 6 milliseconds.

5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.

5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.

5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85 ± 2 for 48 hours, then kept at room temperature for 2 hours.

5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25 ± 2 for 48 hours, then kept at room temperature for 2 hours.

5.6 Temperature Cycle: The components shall remain within the electrical specifications after
5 cycles of high and low temperature testing (one cycle: 80 for 30 minutes
25 for 5 minutes -25 for 30 minutes)than kept at room temperature for 2 hours.

5.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260 for 10 ± 1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

5.8 Solder Ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at 230 ± 5 for 5 ± 1 seconds.

6. Remarks

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.